HOME ASSIGNMENT (2023) Directorate of Open and Distance Learning Dibrugarh University

Subject: M.A./M.Sc. in Mathematics Programme (First Semester)

Course: MATH-101 Real Analysis

Assignment 1

(i) Examine whether interior and closure of connected set are connected.

(ii) Establish the Cauchy criterion for uniform convergence of a sequence of functions.

Assignment 2

- (i) Justify that uniform limit of a sequence of continuous functions is continuous.
- (ii) What is complete metric space? Show that a subspace of a complete metric space is complete if it is closed.

Course: MATH-102 Algebra and Logic

<u>Assignment 1</u>

- (i) State and prove the Sylow's First Theorem.
- (ii) Prove that group of order 15 and 35 are cyclic.

Assignment 2

(i) What is tautology? Examine whether the following is a tautology. ()

$$(P \to Q) \leftrightarrow (\sim P \lor Q)$$

(ii)

Briefly explain the notion of 'adequate set of connectives'.

(5+5)

(5+5)

(5+5)

(5)

(5)

Course: MATH-103 Differential Geometry

<u>Assignment</u> l		(10)
(i)	Define a surface and prove that the property of being an ordinary point is unchanged by a proper parametric transformation.	
<u>Assign</u> (i)	<u>Discuss</u> the geometrical interpretation of the second fundamental form.	(10)
Course: MATH-104 Mechanics		
Assignment 1		(5+5)
(i)	Derive Euler's dynamical equations of motion.	
(ii)	Discuss torque-free motion of a rigid body.	
<u>Assignment 2</u>		(5+5)
(i)	State and prove Jacobi's identity.	
(ii)	Express Hamilton equation of motion in terms of Poisson brackets.	